Version Control And Git

Mark Slater

UNIVERSITYOF
BIRMINGHAM

Useful Links

As well as using material from courses | have taught, this talk
also borrows from a number of very good sources that go in to
much greater detail about git and how to use it:

 Software Carpentry Course:
http://swcarpentry.github.io/git-novice
* Matthew Brett's 'Curious Coders Guide to Git' Page:
https://matthew-brett.github.io/curious-git
* Git homepage:
https://qit-scm.com/

Why do we need Version Control?

 Recording changes

> Being able to record every precise change in a (text)
document and record the reasons for that change

* Providing 'backups'

> Allowing an easy 'undo’ option in case of editing errors
 Reproducibility:

> Being able to return to a previous version of a project

and know it's exactly as it was when it was originally
created

* Collaboration:

> By keeping track of the versions of files, it is a lot easier
for groups to work on the same project

Version Control in Code Development

* The general points in the previous slide can be applied to any

iles in a project, e.qg. bid documents, teaching materials, etc.

* However, where Version Control becomes (arquably) essential
isin code development

 Keeping track of changesin code on any significant sized
project is very important to:

> Tag releases of code
> Compare versions of a code base

> |denti
> Allow
> Efc,, e

'y where bugs have been introduced
parallel and collaborative code development

LC.

Aside: Centralised Version Control

My Working Copy

Central Repository

Examples
Subversion

CVS
s” | Perforce

Aside: Distributed Version Control

My Working Copy

“Central” Repository
_Repo,

Examples
Git

Mercurial
Bazaar

Developing a VCS: Saving a Copy Everyday

* Totry to help explain what Git does, let's go through the steps of
essentially coming up with our own VCS

* The most simple VCS is essentially just taking copies (or 'snapshots') of all
the project's files and putting them in a separate directory

r

my code_ project
main.py

L README. txt

_

— useful funcs.py

~

J

>

ay_code _project

working
| — main.py

| L — README. txt
|— snapshot 2

— main.py
| — README. txt

snapshot 1

|
|
L
\ L— main.py

— useful funcs.py

\

J

J\

-

>

This is the working
copy, where edits
will take place

These are the
snapshots made
everyday

 This already ticks several of the boxes we wanted for VCS - reproducibility,
backup, etc. and at it's core, this is all Git is doing!

Developing a VCS: What did | do again?

 Asignificant thing that isn't present when just copying a project's directory
is knowing what you did and why

 To get around this, let's add a text file in each snapshot (let's call it a
commit from now on) that includes a short message about what has
changed since the last commit with the author and date/time info of the
commit

/ \ ﬂ_code _project \
my code project — working

— working — main.py Note that
| — main.py — useful funcs.py
— useful funcs.py L README . txt message.txt

|

!_ L README. txt > snapshot_2 files in each

snapshot 2 — main.py naosh
| — main.py — message. txt A/ ?]n?epcsto?t
| L — README. txt L — README. txt y
L — snapshot 1 L — snapshot 1

\ L — main.py / — message. txt

L— main.py /

—

* We now have a functional VCS! However, it's not very efficient and is a bit
cumbersome to use.

Developing a VCS: One thing at a time

At present, each commit is just a copy of the working directory every day,
no matter what has been done

* Butwhatifyou get to the end of the day and have 2 or 3 completely
different changes that should go in different commits? Have a staging area!

A{_code _project \
— working
my code project

— _ | — main.py
[— working | — useful funcs.py
| — main.py | | tests.py
| — useful funcs.py | L README. txt
| — tests.py — staging Change;.are
| L — README.txt | — main.py now copied to
— snapshot._2 D | | [penee e the staging
main. -
I '|: messa?e(txt | '— README. txt ared before
| L README 1.:xt '_ snaPSh?t_z the Comm|t IS
L — snapshot 1 I ": 2::25?;-1:}{1: created
— message. txt | L README . txt
L— main.py L— snapshot 1
\ / — message. txt

L— main.py /

* You can now choose which changes to add to a particular commit before
actually committing them

Developing a VCS: Oops - | caused massive breakage

* What happens if you find that 2 commits ago, you managed to break a
crucial Feature?

* What we need to do is copy the appropriate file from the appropriate
commit to our working area ('checkout' the file) and then perform a commit

Ar_code _project \
— working

— main.py

— useful funcs.py
— tests.py

L — README. txt
staging

— main.py

— useful funcs.py
— tests.py

L — README. txt

— snapshot 2

| — main.py

| — message. txt

| L — README. txt

L — snapshot 1

— message. txt
L— main.py /

—

Developing a VCS: Playing nicely with Others

* Let's say you share your repository with someone (Jane') and in parallel

both develop a 'snapshot_3' commit - what happens?

 After committing your version, you copy Jane's commit directory and call it
'snapshot_3 jane'

 Then you can change your working version (i.e. 'snapshot_3'), apply Jane's
changes and finally make the commit as 'snapshot_4'

Gy_code _proj eg
— working

[4 files]
— staging

[4 files]
L — snapshot 2

\ [4 files]j

* Because you are merging two sets of changes, this final commit is called a

Create
snapshot 3
from staging

—)

'Merge Commit’

(;;_code_proje;:\

— working

[4 files]
— staging

[4 files]
— snapshot 3

[5 files]

L — snapshot 2

\\> [4 files {‘)

Copy jane's

COMMIt OVET fy code project

—)

Apply Jane's
changes to -

— working

[4 files]
— staging

[4 files]

[5 files]
— snapshot 3
[5 files]

L — snapshot 2

— snapshot 3 jane

K[4 files] j

commit

-

~ working and

— working

[4 files]
— staging

[4 files]
— snapshot 4

[5 files]
|

[5 files]
— snapshot 3
[5 files]
L — snapshot 2
[4 files]

y_code_ project “\

, snapshot 3 jane

J

Developing a VCS: Making a right hash of things

* Asyou can probably tell, the names for commits are not scalable so a new naming
convention is needed

* Hashing is a very good way to create unique names for things easily as:

> [t will produce an (almost) unique fixed length string for any input
> Small variations in the data will produce very different hashes
> |tis computationally very quick

* So can we use the only unique file in each commit ('message.txt') to generate a hash and
use that as the directory name for the commit?

m_code_project \
— working

[4 files] Note that this is the
T Emy source of all the

[4 files] 0 g
|— 99b52473039acead427el3e42b96c78776e2baf5 (snapshot_4) strings of hexadecimal

[5 files] numbers you will deal
— d396475cc691c8ac7ba7a318726£220c924cf60b (snapshot 3 jane) . h. L

[5 files] with in git!
F—— d9accd0a27c78b4333d70eelad9d7dcalbcc3e682 (snapshot 3)

[5 files]

L— 00d03e9dlbf4ebaea380da3c62e9226189e39£ff4 (snapshot_2)
\[4fi1es] /

* |n theory, yes, but now we don't know what order the commits were made in...

Developing a VCS: Linked in

In order to restore the history, we need each commit message to know what it's
parent(s) was

The hash of the parent can simply be added in a 'Parent’ field in the commit
message when committing

You can then reconstruct the history of your project from these commit messages
but you still get to use the hashed commit names

m_code_project \
— ki X
[wzrfﬂlgs] Message.txt contains -

I—[szagjirllgs] A// Parent: 9920ff... bee0Ya...

— c20351.. (snapshot 4)
[5 files]
| 9920£f. (snapshot 3 jane) ‘\ Both message.txt files contain -

[5 files]
|— bee0O9a.. (snapshot 3) A/ Parent: 905376...

[5 files]

L— 905376.. (snapshot 2)
\ [4 files] /

Note that, because the message.txt has changed for each commit, the hash has
also changed

Also, I will start abbreviating the hashes as git does

Developing a VCS: Making an even bigger hash of things

* Asyou make commits, your will notice you get a copy of every file - this means
your project directory growing continually due to duplicates

 Thisiswhere hashes come in again-ifyou create a hash from the contents of a
file during a commit and it is the same another one, these files are the same

 You can then just save a reference rather than an additional copy of the file

my code project
— working
ﬂ_code_project \ [4 files]

— directory listing.txt

i — staging

S TCCRL
— staging tepo .

[4 files] | e (matn.py) Files renamed
— c20351.. (snapshot 4) € main.py to their

[5 files] = :> | — 27e85e (useful_ funcs.py)
— 9920ff.. (snapshot 3 jane) | ||: i Ml SEE DRI CompUtEd haSh

[5 files] - | 4e3c43 (tests.py) l
| bee09a. (snapshot 3) ,— c20351.. (snapshot 4) value

|

[5 files] L — message.txt

L
[92525;;5](snaPSh°t—2) |— 9920£f.. (snapshot 3_jane)
— directory listing.txt

L— message.txt
— bee09a.. (snapshot 3)

AJ_' — directory listing.txt

| L— message. txt

things such as —~ L — 905376.. (snapshot 2)

18e92b... main.py Q: directory listing.txt /
L

27e85e... useful_funcs.py message. txt

\

Directory Listing files contain

Developing a VCS: Cleaning up

 You can actually take the storing of hashed files even further by hashing the
contents of ‘message.txt' and 'directory_listing.txt' files and moving to the

'objects' directory as well

* You need to add a reference to the correct 'directory listing.txt' file in an
additional field to 'message.txt' and also an additional file to point to the last

commit

y _code project

/
[4 files]

— working

F__

-

|
|
|
-
|

|
|
-
|

— 9920f¢..

L— 905376..
— directory listing.txt
L— message.txt

staging
[4 files]
repo
L— objects
— 18e92b (main.py)
— 27e85e (useful funcs.py)
— 47eef8 (README.txt)
L— 4e3c43 (tests.py)
c20351.. (snapshot 4)
— directory listing.txt
L— message.txt
(snapshot 3 jane)
— directory listing.txt
L— message.txt
beel9a.. (snapshot 3)
— directory listing.txt
L — message.txt

my code project
— working
[4 files]

— staging

[4 files]
L— repo

— my bookmark
L— objects
— 18e92b 3
— 27e85e
— 47eef8
— 4e3c43
— 47eef8

(snapshot_2)

/

The my_bookmark contains
the hash of the latest commit
(message.txt file) which in
turn, knows about it's parent
and the files it contains

All content files,
message files and
> directory listing files are
now renamed with the

).

hash of their contents

Developing a VCS: What we've learned

 Thisis now a fairly close approximation to what git does

* Most importantly though, hopefully this will help you understand some of the
terminology git uses and what it's trying to do:

>

Repository - The folder with all the files associated with the project and
git are located

Index - What git calls the 'staging area’

Commit - creating a copy of the index, adding a message and updating
the hash pointers

Hash - Used to create unique filenames based on the file contents

Branch - Refers to a particular development path, e.q. Jane's changes
above

Remote - This is a remote copy of the repository that may have different
commits to yours, e.g. Jane's copy of the directory

HEAD - the hash that points to the last commit of the current branch
you're working on, used to compare the index with when committing.

Good Git Practise

« When working with git (and any VCS actually), there are few general rules:

1. Only include source files

> You shouldn't add anything that can be created from the source files (e.g.
*.pyc, *.0, etc.)

2. Write good commit messages
> The commit messages can be long so don't just put 'made some changes'
3. Commits should be related

> Only include changes that are related in any one commit
4. Keep commits small

> Large changes in single commits con be confusing and difficult to solve
conflicts

5. Only commit completed work

> Gitisn't a backup system - only commit things that are complete and
tested

Live Coding Demo (!)

Web Clients

* Git has several web based servers to provide a central
repository for your project:

> Github o
> Gitlab (See BEAR's version!)

> Bitbucket

 They all allow similar functionality that extend that of git
itself, notably with:

>

>

>

ssue Tracking
Release Tracking

G | t La b

_) Entte.}grated Testing u BithCket

Graphical Clients

* |n addition to the web options, there are also graphical
clients that have all the git functionality but have a GUI

> Github hasit's own client
> GitKraken

> Git-qui

> SourceTree

@O git

@®

Eﬂﬁqukon

Going Further (1)

* Forking

> This is associated with the web clients and is similar to a 'git clone’

> |t allows you to make a clone of a repo into your account to enable
you to work on it

> You can then request your changes be merged from your fork with a
'Pull Request'

e Tagging
> |fyou hit a point that you want to make a 'release’ or take a named
'snapshot’, you can use tagging

> All this does is create a pointer to a specific commit that you can
refer to later

Going Further (2)

 Using branches

> The way git handles branches is one of it's main selling points and it's encouraged to use
them in development. Gitflow is a typical model:

3 Main branches:
Master - Just contains releases
Develop - feature branches are added
Release - release candidates tested

ALL features
developed in their
own separate 4
branches and [,
merged to develop
when complete

Only when a release
__candidate has passed all
tests, it gets tagged on the
master branch any bugfixes

added back in to develop

For more info:
https://datasift.github.io/gitfFlow/IntroducingGit
Flow.html

Summary

Hopefully that has demystified some of what git is, does and
now it works if you haven't used it before. For more info, do
hlease have a loot at:

 Software Carpentry Course:
http://swcarpentry.github.io/git-novice
* Matthew Brett's 'Curious Coders Guide to Git' Page:
https://matthew-brett.github.io/curious-qit
* Git homepage:
https://qit-scm.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

